본문 바로가기

Algorithm69

[백준 알고리즘] 10799, 쇠막대기 문제 여러 개의 쇠막대기를 레이저로 절단하려고 한다. 효율적인 작업을 위해서 쇠막대기를 아래에서 위로 겹쳐 놓고, 레이저를 위에서 수직으로 발사하여 쇠막대기들을 자른다. 쇠막대기와 레이저의 배치는 다음 조건을 만족한다. 쇠막대기는 자신보다 긴 쇠막대기 위에만 놓일 수 있다. - 쇠막대기를 다른 쇠막대기 위에 놓는 경우 완전히 포함되도록 놓되, 끝점은 겹치지 않도록 놓는다. 각 쇠막대기를 자르는 레이저는 적어도 하나 존재한다. 레이저는 어떤 쇠막대기의 양 끝점과도 겹치지 않는다. 아래 그림은 위 조건을 만족하는 예를 보여준다. 수평으로 그려진 굵은 실선은 쇠막대기이고, 점은 레이저의 위치, 수직으로 그려진 점선 화살표는 레이저의 발사 방향이다. 이러한 레이저와 쇠막대기의 배치는 다음과 같이 괄호를 이용하여.. 2020. 12. 15.
[백준 알고리즘] 1003번, 피보나치 함수 문제 다음 소스는 N번째 피보나치 수를 구하는 C++ 함수이다. int fibonacci(int n) { if (n == 0) { printf("0"); return 0; } else if (n == 1) { printf("1"); return 1; } else { return fibonacci(n‐1) + fibonacci(n‐2); } } fibonacci(3)을 호출하면 다음과 같은 일이 일어난다. fibonacci(3)은 fibonacci(2)와 fibonacci(1) (첫 번째 호출)을 호출한다. fibonacci(2)는 fibonacci(1) (두 번째 호출)과 fibonacci(0)을 호출한다. 두 번째 호출한 fibonacci(1)은 1을 출력하고 1을 리턴한다. fibonacci(0)은 .. 2020. 12. 14.
[백준 알고리즘] 1018번, 체스판 다시 칠하기 문제 지민이는 자신의 저택에서 MN개의 단위 정사각형으로 나누어져 있는 M*N 크기의 보드를 찾았다. 어떤 정사각형은 검은색으로 칠해져 있고, 나머지는 흰색으로 칠해져 있다. 지민이는 이 보드를 잘라서 8*8 크기의 체스판으로 만들려고 한다. 체스판은 검은색과 흰색이 번갈아서 칠해져 있어야 한다. 구체적으로, 각 칸이 검은색과 흰색 중 하나로 색칠되어 있고, 변을 공유하는 두 개의 사각형은 다른 색으로 칠해져 있어야 한다. 따라서 이 정의를 따르면 체스판을 색칠하는 경우는 두 가지뿐이다. 하나는 맨 왼쪽 위 칸이 흰색인 경우, 하나는 검은색인 경우이다. 보드가 체스판처럼 칠해져 있다는 보장이 없어서, 지민이는 8*8 크기의 체스판으로 잘라낸 후에 몇 개의 정사각형을 다시 칠해야겠다고 생각했다. 당연히 8.. 2020. 12. 13.
[백준 알고리즘] 11729번, 하노이 탑 이동 순서 문제 세 개의 장대가 있고 첫 번째 장대에는 반경이 서로 다른 n개의 원판이 쌓여 있다. 각 원판은 반경이 큰 순서대로 쌓여있다. 이제 수도승들이 다음 규칙에 따라 첫 번째 장대에서 세 번째 장대로 옮기려 한다. 한 번에 한 개의 원판만을 다른 탑으로 옮길 수 있다. 쌓아 놓은 원판은 항상 위의 것이 아래의 것보다 작아야 한다. 이 작업을 수행하는데 필요한 이동 순서를 출력하는 프로그램을 작성하라. 단, 이동 횟수는 최소가 되어야 한다. 아래 그림은 원판이 5개인 경우의 예시이다. 입력 첫째 줄에 첫 번째 장대에 쌓인 원판의 개수 N (1 ≤ N ≤ 20)이 주어진다. 출력 첫째 줄에 옮긴 횟수 K를 출력한다. 두 번째 줄부터 수행 과정을 출력한다. 두 번째 줄부터 K개의 줄에 걸쳐 두 정수 A B를 빈.. 2020. 12. 12.
[백준 알고리즘] 2447번, 별 찍기 - 10 문제 재귀적인 패턴으로 별을 찍어 보자. N이 3의 거듭제곱(3, 9, 27, ...)이라고 할 때, 크기 N의 패턴은 N×N 정사각형 모양이다. 크기 3의 패턴은 가운데에 공백이 있고, 가운데를 제외한 모든 칸에 별이 하나씩 있는 패턴이다. *** * * *** N이 3보다 클 경우, 크기 N의 패턴은 공백으로 채워진 가운데의 (N/3)×(N/3) 정사각형을 크기 N/3의 패턴으로 둘러싼 형태이다. 예를 들어 크기 27의 패턴은 예제 출력 1과 같다. 입력 첫째 줄에 N이 주어진다. N은 3의 거듭제곱이다. 즉 어떤 정수 k에 대해 N=3k이며, 이때 1 ≤ k < 8이다. 출력 첫째 줄부터 N번째 줄까지 별을 출력한다. 풀이 ip = int(input()) a = [[' ']*ip for _ in r.. 2020. 12. 11.
[백준 알고리즘] 3053번, 택시 기하학 문제 19세기 독일 수학자 헤르만 민코프스키는 비유클리드 기하학 중 택시 기하학을 고안했다. 택시 기하학에서 두 점 T1(x1,y1), T2(x2,y2) 사이의 거리는 다음과 같이 구할 수 있다. D(T1,T2) = |x1-x2| + |y1-y2| 두 점 사이의 거리를 제외한 나머지 정의는 유클리드 기하학에서의 정의와 같다. 따라서 택시 기하학에서 원의 정의는 유클리드 기하학에서 원의 정의와 같다. 원: 평면 상의 어떤 점에서 거리가 일정한 점들의 집합 반지름 R이 주어졌을 때, 유클리드 기하학에서 원의 넓이와, 택시 기하학에서 원의 넓이를 구하는 프로그램을 작성하시오. 입력 첫째 줄에 반지름 R이 주어진다. R은 10,000보다 작거나 같은 자연수이다. 출력 첫째 줄에는 유클리드 기하학에서 반지름이 R.. 2020. 12. 10.
반응형